废水处理中厌氧污泥颗粒化研究进展

摘要综述了废水处理中厌氧污泥颗粒化研究进展,介绍了厌氧颗粒形成的主要理论,解释了颗粒污泥之间的关系、组成和厌氧污泥颗粒化的影响因素。研究表明:胞外聚合物是细菌群落以颗粒污泥形式存在关键;此外,温度、有机负荷率、ph值、碱度、营养盐、阳离子和重金属是影响厌氧颗粒污泥形成的重要因素。产甲烷过程中的产气量与颗粒污泥内部产甲烷菌的活性密切相关。
关键词:uasb反应器 厌氧颗粒污泥 胞外聚合物 微生物 甲烷
废水厌氧处理技术由于其具有低污泥产量、低运行成本以及低能耗等特点而成为应用泛的处理技术之一[1],并且已被是的废水处理方式。相对于其他传统的厌氧工艺,升流式厌氧污泥床(uasb)反应器实现了沼气收集[2]和高浓度废水处理[3],被广泛使用于废水厌氧处理中[4–11]。
1969年,young和mccarty观察到了厌氧颗粒污泥[12],但由于当时经费不足且难以深入了解颗粒污泥的形成,颗粒污泥的研究进程较缓慢。颗粒污泥作为厌氧生物法处理废水的主体,也成为国内外学者研究的热点。污泥颗粒化是一个复杂的物理、化学及微生物相互作用的过程,已有很多理论对uasb反应器内微生物群落的功能进行了阐述。大多数研究认为产甲烷菌对污泥颗粒化过程起着关键作用[13],甲烷菌的聚集作用促进了颗粒污泥的形成,一部分研究认为细菌的粘附作用是污泥颗粒形成的原始因素[14],也有研究认为颗粒的形成需要稳定的运行条件,避免颗粒的冲刷,以及ph和温度的影响。然而污泥颗粒化机制尚未十分明确。因此,本文对uasb反应器内颗粒污泥的形成进行综述,并对重要的试验研究进行讨论。
1 厌氧污泥颗粒化理论
厌氧污泥颗粒化实质上是一个厌氧微生物生态系统演化的过程[15],颗粒化过程本身的复杂性决定了颗粒污泥结构的复杂性,生长基质、操作条件、反应器中的流体流动状况等都会影响颗粒污泥的结构。研究者们对颗粒污泥的形成进行各种分类,liu将污泥颗粒化模型分为物理化学模型和结构模型[16],thaveesri等从热力学的角度研究了颗粒污泥的结构,hulshoff随后报道了一种新的颗粒形成分类方法。表1介绍了一些基础的污泥颗粒化理论。
表1 几种颗粒污泥形成理论
序号
方法
理论名称
1
物理法
选择压理论[13]
悬浮颗粒增长理论[17]
2
微生物法
开普敦假说[18]
絮凝架桥理论[19]
甲烷菌聚集理论[20]
3
热力学法
晶核形成理论[21]
表面张力理论[22]
2 污泥颗粒化过程种泥的选择
通常情况下,种泥可取自厌氧沉淀池、化粪池、粪便、消化污泥和厌氧污水处理厂等[23]。研究人员利用含有某种菌群的种泥,对 uasb反应器启动期间污泥颗粒化进行研究。zeikus研究表明,好氧活性污泥中甲烷菌含量高达108/g,而消化污泥中甲烷菌含量更高,达2.5×1010/g[24]。研究者将不同种泥应用于uasb反应器的启动均获得了成功,其中将活性污泥作为接种污泥时能够获得更好的运行效能,且启动期较短。各种关于污泥颗粒化的研究表明,含有甲烷菌胶团的种泥对颗粒污泥的形成具有促进作用,而利用含有产酸菌的种泥则会延缓颗粒的增长[25]。另外,阳离子和矿物质也是影响颗粒污泥形成的关键因素。
3颗粒污泥的组成
由于废水性质的不同以及运行条件的变化,每个颗粒污泥具有不同的结构,其中无机物、微生物和胞外聚合物的比例也不同。
3.1无机物
由于基质特性、种泥、反应器运行条件、发生的化学反应以及外在因素的不同,颗粒污泥的组成也有所不同。一般情况下,无机物由矿物质和灰分组成[26]。根据废水组成和运作条件的不同,颗粒污泥中无机成分在10%~90%不等[27]。除此之外,即使是同一颗颗粒污泥在同一个反应器内,随着其位置的改变,其无机组分也会改变。事实上,有研究表明,处理复杂废水的颗粒污泥中无机物比例较低,而处理简单的废水(如乙酸,丙酸,丁酸)[28]时,无机物比例较高。颗粒污泥中灰分比例的增大会引起密度的增大[29]。此外,灰分中含有的30%fes是颗粒呈黑色的主要原因[30]。另外,尚未发现灰分是否能增强颗粒的强度[24]。
3.2微生物
每一颗颗粒污泥都是功能齐全的个体,包含了各种分解有机物的微生物。颗粒的形成开始于微生物的黏附作用,即胞外聚合物和其他组分形成菌胶团,并且大多数污泥颗粒化理论也一致认同[13], 甲烷菌可促进污泥颗粒化进程。但也有研究认为,先由乙酸菌形成菌胶团,形成的菌胶团随后创建甲烷菌群以利于污泥颗粒化过程[16]。
3.3胞外聚合物
一些研究表明细菌产生的胞外聚合物[31]对颗粒污泥的形成具有重要影响[31–34]。不同的胞外聚合物带有不同电荷的离子,电荷相反的离子之间的相互吸引可能是颗粒污泥形成的重要条件,胞外聚合物通过吸附架桥作用[35–36]形成强度较大不易变形的颗粒[37–38]。然而,过量的胞外聚合物不利于颗粒的形成并可能导致絮状物的产生[39]。将胞外聚合物从细胞培养过程中分离出来并添加到uasb反应器内,发现并不利于颗粒污泥形成,相反起到了抑制作用[40]。
4影响污泥颗粒化过程的因素
4.1温度
产甲烷菌相比产酸菌更易受温度的影响[41]。大多数微生物都适合在中温条件下生长,温度为30~40℃。而事实上,中温条件下的颗粒污泥相比高温条件下的颗粒污泥更易受到温度的冲击,并且更易被分解[42]。有报道指出,中温条件下接种的污泥相比高温条件其活性更高,反应器所需的启动期也更短[43]。温度对污泥颗粒化过程的影响意见不一,而且中温条件和高温条件下不同的颗粒污泥结构也并未清楚。
4.2有机负荷率
有机负荷率是需要考虑的最关键因素之一,应谨慎调整,可通过调整进水cod浓度或进水流速控制[44]。增加有机负荷率易使挥发性脂肪酸积累,导致应器内ph降低[45];降低有机负荷率则会导致颗粒污泥因饥饿而分解。通常有机负荷率不应小于1.5kgcod/(m3∙d)[46],虽然有学者在有机负荷率1.5kgcod/(m3∙d)条件下成功培育出了颗粒污泥[47–48],的高品质颗粒污泥生长的有机负荷率[49]为2~4.5kg cod/(m3∙d)。
4.3ph 和碱度
颗粒颗粒内的ph值通常较周围溶液低[50]。根据微生物的特性,产甲烷微生物比产酸微生物对ph值的波动更敏感,并且产甲烷菌的生存环境需ph>6.3。实际上,ph<6.3的酸性环境会抑制产甲烷菌的生长并降低甲烷产量[51]。另一方面,有机负荷率的增加或变化会导致vfa的增多,而碱度在中和调整ph波动方面[52]发挥显著的作用。通常,碱度的范围为250~950 mg/l[53]。
4.4营养物质
进水中的营养物质(氮、磷和硫)是保证颗粒污泥形成的基本元素。颗粒形成的初始阶段,在进水中投放营养元素可促进污泥颗粒化过程。而当进水中缺乏营养物质则会对污泥颗粒化过程产生不利影响。据报道,当氮浓度低于300 mg/l时,颗粒污泥的生长会出现低迷的状态[53]。此外,营养物质浓度过高,也会抑制颗粒污泥的生长[54]。
4.5 阳离子和重金属
颗粒污泥的形成是一个非常复杂的过程,与吸附作用和细菌粘附作用有关。颗粒化过程所需的主要阳离子为细菌表面的氨基和蛋白质中羧基[55],可加速颗粒污泥的形成[13,37,56];另一方面,一些金属离子的毒性与各种因素有关,如种类、结构、ph值、vfa浓度、水力停留时间,以及细菌表面所需离子的比例[57]。众多学者对一些多价阳离子(如钙、铁和铝)在颗粒形成过程所起的作用进行了研究,发现钙离子能改善初始颗粒污泥的形成。具体来说,钙离子增强了细胞和胞外聚合物之间的粘附作用[20],因此,钙离子的存在是颗粒污泥形成的必要条件。针对溶液中的钙离子浓度的研究结论不一,有学者认为80~150 mg/l为条件,可加速颗粒污泥生长[58],但也有研究表明,浓度为150~300 mg/l[59];研究同时发现,过量钙离子浓度可能会抑制颗粒污泥的生长。铁离子可促进cod转化为生物量[60],当铁离子含量高达300mg/l时,在较短时间内可获得较大颗粒[14]。此外,铝对加速颗粒的形成具有重要作用[59]。值得注意的是,uasb反应器中过量的矿物质会抑制污泥颗粒化进程。
5产甲烷过程的微生物活性
uasb反应器中的产甲烷过程包含了有机物的转化过程,这个过程需要某些微生物的参与完成,即完成水解、酸化、产乙酸和产甲烷阶段,这些过程与废水的ph和温度密切相关[61]。废水中ph较低时,除了vfa积累,产甲烷活性也会受到抑制,将不利于产沼气。另外,温度是影响厌氧生物处理工艺的重要因素,温度主要是通过对厌氧微生物细胞内某些酶的活性的影响而影响微生物的生长速率和微生物对基质的代谢速率,这样就会影响到废水厌氧生物处理工艺中污泥的产量、有机物的去除速率、反应器所能达到的处理负荷。温度还会影响有机物在生化反应中的流向和某些中间产物的形成以及各种物质在水中的溶解度,因而可能会影响到沼气的产量和成分等;另外温度还可能会影响剩余污泥的成分与性状。
6 结语
uasb反应器内颗粒污泥大,有机物去除率高,能够降解高浓度有机废水,是关注的反应器之一,其成功运行的核心因素是反应器内污泥床中颗粒污泥形成。颗粒污泥已应用于各类污水的处理,可获得更安全的出水,以保护环境。胞外聚合物是影响微生物聚集的重要因素,与不同电荷的金属离子结合可促进污泥颗粒化过程,但是无机组分对污泥颗粒化过程影响不大。另外,沼气产生过程与颗粒污泥的活性有关。适合的温度和ph对产沼气过程和沼气产量具有重要作用。废水中适合的金属离子和营养物质浓度有利于颗粒污泥的形成。因而,uasb反应器的运行过程中,应认真考虑影响污泥颗粒化过程的各种因素,以充分发挥其优势。
参考文献
[1] van lier, j, b. high-rateanaerobic wastewater treatment: diversifying from end-of-the-pipe treatment toresource-oriented conversion techniques. water science & technology, 2008, 57(8):1137–1148.
[2] lettinga, g, hulshoff pol l,w, h, and zeeman, g. anaerobic wastewater treatment. in biological wastewatertreatment. wageningen university, 2000.
[3] lettinga, g, van velsen, a, f,hohma, s, m, de-zeeuw, w, and klapwijk, a use of upflow sludge blanket (uasb)reactor concept for biological waslewater treatment. biotech. bioengrg, 1980,22, 699–734.
[4] arshad a, hashmi hn, qureashiia. anaerobic digestion of chlorpheno-lic wastes. international journal ofenvironmental research, 2011, 5(1):149–158.
[5] dixit a, tirpude aj, mungrayak, chakraborty m. degradation of 2, 4 dcp by sequential biological-advancedoxidation process using uasb and uv/tio2/h2o2.desalination, 2011, 272(1-3):265-269.
[6] aquino sf, baêta bel, silvasq, rabelo ca. anaerobic degradation of azo dye drimaren blue hfrl in uasbreactor in the presence of yeast extract a source of carbon and redox mediator.biodegradation, 2011:1–10.
[7] el-kamah h, mahmoud m, tawfika. performance of down-flow hanging sponge (dhs) reactor coupled with up-flowanaerobic sludge blanket (uasb) reactor for treatment of onion dehydrationwastewater. bioresource tech-nology, 2011, 102(14):7029-7035.
[8] tang c-j, zheng p, wang c-h,mahmood q, zhang j-q, chen x-g, et al. performance of high-loaded anammox uasbreactors containing granular sludge. water research, 2011, 45(1):135-144.
[9] jin r-c, ma c, mahmood q, yangg-f, zheng p. anammox in a uasb reactor treating saline wastewater. processsafety and environmental protection, 2011, 89:342-348.
[10] lettinga, g and hulshoff pol,l. w. uasb process design for various types of wastewaters. water sci. technol,1991, 24 (8), 87–107.
[11] maat, d, z and habets, l, h,a. the upflow anaerobic sludge blanket wastewater treatment system. atechnological review. pulp paper can, 1987, 88, 60–64.
[12] young, j, c and mccarty, pl.the anaerobic filter for waste treatment. water pollute control federation,1969,160-173.
[13] hulshoff, p, l, w, lopes, s,i. d, lettinga, g, and lens, p, n, l. anaerobic sludge granulation. waterresearch, 2004, 38, 1376–1389.
[14] yu, h, q, fang, h, h, andtay, j, h. effect of fe2+on sludge granulation in upflow anaerobicsludge blanket reactor. water sci. techno, 2000, 199–215.
[15]张杰. ic 反应器处理猪粪废水条件下厌氧污泥颗粒化研究[d].郑州: 河南农业大学,2004: 25–29.
[16] yu, l, hai-lou, x, shu-fang,y, and joo-hwa, t. mechanisms and models for anaerobic granulation in upflowanaerobic sludge blanket reactor. water research, 2003, 37, 661–673.
[17]pereboom, j, h, f. sizedistribution model for methanogenic granules from full scale uasb and icreactors. water sci, technol, 1994, 30(12),211-221.
[18]sam-soon, p, loewenthal, r,e,dold, p, l, and marais, g. hypothesis for pelletisation in the upflow anaerobicsludge bed reactor. water sa, 1987, 13(2), 69–80.
[19]dubourgier, h, c, prensier, g,and albagnac, g. structure and microbial activities of granular anaerobicsludge. microbiology, 1987, 18–33.
[20]morgan, j, w, evison, l, m,and forster c, f. internal architecture of anaerobic sludge granules. j chemtechnol biotechnol, 1991, 50, 211-226.
[21] zhu, j, hu, j, and gu, x. thebacterial numeration and the observation of a new syntrophic association for granularsludge. wat sci tech, 1997, 36(6/7), 133-140.
[22] thaveesri j, daffonchio d,liessens b, vandermeren p,verstraete w. granulatio n and sludge bed stabilityin upflow anaerobic sludge bed reactors in relation to surface thermodynamics.appl environ microbiol, 1995, 61(10), 3681-3686.
[23]yu, l, hai-lou, x, kuan-yeow,s, and joo-hwa, t. anaerobic granulation technology for wastewater treatment.world journal of microbiology & biotechnology, 2002, 18: 99–113.
[24]zeikus, j, g. microbialpopulations in digesters. in anaerobic digestion. stafford, a.d, 1979, 75-103.
[25]el-mamouni, r, leduc, r, andguiot, s.r. influence of the starting microbial nucleus type on the anaerobicgranulation dynamics. applied microbiology and biotechnology, 1997,47:189–194.
[26] ahring, b. k, christansen, n,mathrani, i, hendrikxen, h, v, macario, a, j, l, and conway, d. introduction ofa de novo bioremediation ability,aryl reductive dechlorination, into anaerobicgranular sludge by inoculation of sludge with desulfomonile tiedjei. appl.environ. microbio, 1992, 58:3677–3682.
[27] alibhai, k. r. k and forster,c. f. physicochemical and biological characteristics of sludges produced inanaerobic upflow sludge blanket reactors. enzyme microb. technol, 1988, 8:601–605.
[28] ross, w. r. the phenomenon ofsludge pelletisation in the anaerobic treatment of a maize processing waste.water sa, 1984, 4:197–204.
[29]hulshoff pol, l. w, van deworp, j, j, m, lettinga, g, and beverloo, w. a. physical characterization ofanaerobic granular sludge, 1986:89–101.
[30]dolfing, j, griffioen, a, vanneerven, a, r, w, and zevenhuizen, l. p. t. m. chemical and bacteriologicalcomposition of granular methanogenic sludge. can j. microbiol, 1985, 31:744–750.
[31]li zx, yang jl, liu c, guo jb,xing ln. characteristics of sludge granulation without carrier in full-scaleuasb reactor. journal of nanjing university of science and technology, 2008, 32:655-660.
[32]ismail sb, de la parra cj,temmink h, van lier jb. extracellular polymeric substances (eps) in upflowanaerobic sludge blanket (uasb) reactors operated under high salinityconditions. water research, 2010, 44:1909-1917.
[33] tiwari mk, guha s,harendranath cs, tripathi s. enhanced granulation by natural ionic polymeradditives in uasb reactor treating low-strength wastewater. water research,2005, 39:3801-3810.
[34]jia xs, fang hhp,furumai h. surface charge and extracellular polymer of sludge in the anaerobicdegradation process. process of biochemistry, 1996, 34:309-316.
[35]hulshoff pol lw, de zeeuw wj, velzeboer ctm, lettinga g. granulation in uasbreactor. water science and technology, 1983, 15:291–304.
[36]schmidtje, ahring bk. extracellular polymers in granular sludge from different upflowanaerobic sludge blanket (uasb) reactors. applied microbiology biotechnology,1994, 42:457-462.
[37]fermosofg, bartacek j, manzano r, van leeuwen hp, lens pnl. dosing of anaerobicgranular sludge bioreactors with cobalt: impact of cobalt retention onmethanogenic activity. bioresource technology, 2010, 101(24):9429-9437.
[38] liuy, tay j-h. state of the art of biogranulation technology for wastewatertreatment. biotechnology advances, 2004, 22(7):533-563.
[39]schmidtje, ahring bk. granular sludge formation in upflow anaerobic sludge blanket(uasb) reactors. biotechnology bioengineering, 1996, 49:229-246.
[40] morgan jw, forster cf, evison lm. a comparative studyof the nature of biopolymers extracted from anaerobic and activated sludge.water research, 1990, 24:743-750.
[41]chou h, h, huang j, s, andhong w, f. temperature dependency of granule characteristics and kineticbehavior in uasb reactors. j chem technol biotechno, 2004, 79:797–808.
[42]van lier, j, b, j, rintala,sanz martin, j, l, and g, lettinga. effect of short-term temperature increaseon the performance of a mesophilic uasb reactor. water sci technol, 1990, 22:183–190.
[43]syutsubo, k, harada, h,ohashi, a, and suzuki, h. an effective start-up of thermophilic uasb reactor byseeding mesophilically grown granular sludge. water sci technol, 1997, 24:35–59.
[44] manoj, k, t, saumyen, g,harendranath, s, and shweta, t. influence of extrinsic factors on granulationin uasb reactor. appl microbiol biotechno, 2006, 71:145–154.
[45] dohanyos, m, kosova, b,zabranska, j, and grau, p. production and utilization of volatile fatty acidsin various types of anaerobic reactors. water sci technol, 1985, 17:191–205.
[46]ahn, y, h, song, y, j, lee, y,j, and park, s. physicochemical characterization of uasb sludge with differentsize distributions. environ technol, 2002, 23:889–897.
[47]tiwari, m, k, guha, s,harendranath, c,s, and tripathi, s. enhanced granulation by natural ionicpolymer additives in uasb reactor treating low-strength wastewater. water res,2005, 39:3801–3810.
[48] sanjeevi, r. studies on the treatment of low-strengthwastewater with upflow anaerobic sludge blanket (uasb) reactor: with emphasison granulation studies. phd thesis, pondicherry university, 2011:91.
[49] ghangrekar, m, m, asolekar,s, r, and joshi, s, g. characteristics of sludge developed under differentloading conditions during uasb reactor start-up and granulation. water res,2005, 39:1123–1133.
[50] lens, p, de beer, d,cronenberg, c, ottengraf, s, and verstraete, w. the use of microsensors todetermine population distributions in uasb aggregates. water sci technol, 1995,31:273–280.
[51]van haandel, a,c and lettinga,g. anaerobic sewage treatment: a practical guide for regions with a hotclimate. wiley, chichester , england, 1994.
[52] isik, m and sponza, d, t.effects of alkalinity and co-substrate on the performance of an upflowanaerobic sludge blanket (uasb) reactor through decolorization of congo red azodye. bioresour technol, 2005, 96:633–643.
[53] singh, r, p, kumar, s, andojha, c. s. p. nutrient requirement for uasb process: a review. biochem eng j,1999, 3:35–54.
[54]jarrell, k, f and kalmokoff,m, l. nutritional requirements of the methanogenic archaebacteria. can jmicrobiol, 1988, 34:557–576.
[55]artola, a, balaguer, m,d, and rigola, m. heavy metal binding to anaerobic sludge. water res, 1997, 31:997–1003.
[56] zhang d, chen y, zhao y, ye z. a new process forefficiently producing methane from waste activated sludge: alkalinepretreatment of sludge followed by treatment of fermentation liquid in an egsbreactor. environmental science and technology, 2011; 45(2):803–808.
[57]gould, m, s and genetelli, e,j. effects on complexation on heavy metal binding by anaerobically digestedsludges. water res, 1984, 18:123–126.
[58]alibhai, k, r.k and forster,c, f. an examination of granulation process in uasb reactors. environ technollett, 1986, 7:193–200.
[59]yu, h, q, tay, j, h, and fang,h. h. p. the roles of calcium in sludge granulation during uasb reactorstart-up. water res, 2001, 35:1052–1060.
[60]oleszkiewicz, j, a and sharma,v, k. stimulation and inhibition of anaerobic processes by heavy metals— areview. biol wastes, 1990, 31:45–67.
[61]kashyap, d, r, dadhich, k.s,and sharma, s, k. biomethanation under psychrophilic conditions: a review.bioresource technology, 2003, 87:147–153.

煤炭硫含量测定精品设备--煤炭含硫量检验仪器-鹤壁中创多年研制
德国亨士乐HENGSTLER编码器的使用分类
海口到古交航空货运物流_海口到古交空运加急当天到
五金礼品,颠覆传统礼品观念
鸡肉和鸡蛋中*和*类药物残留的检测解决方案
废水处理中厌氧污泥颗粒化研究进展
郑州到圣地亚哥物流专线,郑州到圣地亚哥国际货运专线
选购木工雕刻机时,需要检查哪些位置
烟台到荆门空运加急当天到_航空托运_烟台到荆门航空货运公司
海口到自贡空运加急当天到_航空托运_海口到自贡航空货运公司
济南搬家到釜山货运公司_济南到釜山国际搬家海运
防护罩内应装有加热器
微量水分测定仪使用中的若干问题
无机纤维喷涂棉厂家(材料和施工)
卧式镗铣中心的特点和优势
滚筒回转烘干机具体工作原理
普宁海运到挪威,普宁到挪威海运专线
玻璃瓶包装容器内应力测试仪 介绍
专业淄博到奥斯陆物流公司,淄博到奥斯陆物流专线
南昌到海口空运公司,南昌空运到海口,南昌到海口航空货运